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� Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The liquid state is one of the three principal

states of matter and arguably the most important one, the

main reasons being the following: (I) the majority of

chemical synthesis reactions are liquid-state reactions; (II)

separation processes, such as distillation, extraction, and

fractional crystallization, are based on vapor–liquid equi-

libria, liquid–liquid equilibria, and solid–liquid equilibria,

respectively, all involving multicomponent mixtures/solu-

tions; (III) when focusing on water as solvent, we note that

it is the most abundant substance on the surface of the

earth, and being the principal constituent (about 70% by

weight) of all living organisms, it is essential for life as we

know it. Thus, it is not surprising at all that experimental as

well as theoretical work on nonelectrolyte solutions in

general, and on aqueous solutions of nonelectrolytes in

particular, have held prominent positions in (bio-)physical

chemistry for more than a century. The insights thereby

gained have contributed decisively to build the formal

structure of chemical thermodynamics and have paved the

way for the development of practically useful real-solution

models needed in chemical engineering. In this review, first

the thermodynamic formalism relevant for solubility stud-

ies as well as a critical discussion of some popular

approximations will be presented concisely. Estimation

methods for auxiliary quantities, such as virial coefficients

and partial molar volumes at infinite dilution, will be

briefly indicated, followed by a summary of rational

strategies for data reduction and data correlation. Finally, a

few eclectically chosen results obtained for dilute aqueous

solutions of nonelectrolytes will be linked to hydrophobic

effects, which are generally accepted to play an important

role in a wide variety of biological processes.
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Introduction

More than 60 years ago, Hildebrand and Scott [1] pointed

out that ‘‘the entire history of chemistry bears witness to

the extraordinary importance of the phenomena of solu-

bility.’’ Indeed, solubility has remained one of the most

important topics in chemistry [2, 3], and solubility data [4]

are required in quite diverse areas of the pure and applied

sciences, for instance in chemical engineering, geochem-

istry, environmental science, biophysical chemistry and

biophysics, pharmacology, biomedical technology and so

forth. In particular the study of the solubility of nonelec-

trolytes in liquids has been of immense value for the

development of the general discipline of mixture thermo-

dynamics. For instance, by introducing idealized solution

models, such as the one based on the Lewis–Randall (LR)

rule, or the one based on Henry’s law (HL) [3, 5, 6], new

classes of thermodynamic functions known as excess

functions may be introduced which greatly facilitate the

discussion of liquid mixtures and solutions. When the focus

is on water as solvent [7, 8], we note that (I) water is the

most abundant substance on the surface of the earth, (II) it

is the only substance that occurs naturally in all three states

of matter, and (III) it sustains life as we know it. In fact,
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water is the principal constituent of all living organisms,

making up about 70% by weight, or more, for most. Water

is important for the structure, the stability and the function

of biomolecules, that is to say it has a controlling influence

on biochemical processes [9, 10]. Considering all the sol-

ubility-related topics indicated above, it is hardly surprising

that for more than a century experimental as well as the-

oretical investigations of solution properties and phase

equilibria involving solutions in general, and aqueous

solutions in particular, have held prominent positions in

(bio-)physical chemistry. The scientific insights gained

thereby are invaluable, and besides contributing decisively

to the creation of the formal structure of chemical ther-

modynamics they have paved the way for the development

of practically useful models describing solution behavior in

chemical engineering applications [3, 11, 12].

Chemical thermodynamics is a highly formalized scien-

tific discipline of enormous generality. It provides a mathe-

matical framework which yields exact relations between

macroscopically observable thermodynamic equilibrium

properties of matter, establishes rigorous equations applying

to phase equilibria, and restricts the behavior of any natural

process. While this aspect alone is already of the greatest

practical value, in conjunction with appropriate molecular-

based models of material behavior, that is to say by using

concepts from statistical mechanics, experimentally deter-

mined thermodynamic quantities contribute decisively

toward a better understanding of molecular interactions. A

plenary lecture provides an opportunity to survey a reason-

ably large area of any scientific discipline and to reflect on it

from the perspective of many years of research. As indicated

in the title of this review, the field covered here is aqueous

solutions of nonelectrolytes, a vast topic to which I have

contributed for about 35 years. The coverage throughout

will be necessarily brief, and for more details the interested

reader should consult the pertinent literature listed. My

choices for references are illustrative and not comprehen-

sive, simply reflecting my preferences and idiosyncrasies.

The first part of this review will be devoted to the

concise presentation of the thermodynamic formalism rel-

evant for solubility studies, while the following section will

focus on various popular approximations to the exact

relations obtained so far. These approximations are indis-

pensable when practical application of the thermodynamic

relations is the goal. In particular, some current estimation

techniques for auxiliary quantities, such as virial coeffi-

cients and partial molar volumes at infinite dilution, as well

as rational strategies for data reduction, data correlation,

and prediction will be included [5, 6, 13–15]. Finally, in the

next section a few eclectically chosen experimental results

obtained for aqueous solutions of nonelectrolytes will be

presented, with the solubility of supercritical solutes, i.e.,

gases, occupying the center stage. Almost inevitably, pride

of place will be given the Henry fugacity (also known as

Henry’s law constant) [6, 13, 14], which is certainly one of

the most often used, yet also one of the most misunderstood

quantities in physical chemistry. Together with some clo-

sely related derived quantities it is linked to hydrophobic

hydration and hydrophobic interaction, which are gener-

ally accepted to play an important role in a wide variety of

biological processes, such as protein folding and the self-

assembly of amphiphiles into membranes [9, 10, 16–29].

Thermodynamic fundamentals

When discussing solutions and solubility, say, the solu-

bility of a gas in a liquid at a given temperature T and

pressure P, one is either interested in single-phase prop-

erties, such as partial molar volume or partial molar heat

capacity, or in quantities which characterize the equilib-

rium solubility itself, for instance the amount of substance

i, the solute, dissolved in a given amount of solvent j in the

presence of both coexisting phases. As already stated in the

introduction to this review, only vapor–liquid equilibria

(VLE) will be discussed in some detail, and liquid–liquid

equilibria (LLE) and solid–liquid equilibria (SLE) will not

be considered at all. We only note that experimental LLE

and SLE determinations are usually performed under iso-

baric conditions, while VLE experiments are preferably

based on isothermal measurements.

A general criterion for any phase equilibrium in PVT-

systems (V denotes the molar volume) of uniform tem-

perature and pressure is the equality of the chemical

potential lp
i of each constituent component i in all coex-

isting phases p, or equivalently, the equality of the fugacity

f p
i of each constituent component i in all coexisting phases

p [3, 30]. Specifically, for VLE, where p may designate

either vapor (V) or liquid (L), we thus obtain

f V
i T ; P; xV

i

� �� �
¼ f L

i T ; P; xL
i

� �� �
; i ¼ 1; 2; . . .; N ð1Þ

where N is the number of components, xV
i

� �
is the set of vapor-

phase mole fractions, xL
i

� �
is the set of liquid-phase mole

fractions, and
P

xp
i ¼ 1. For simplicity, however, from now on

only binary systems will be considered where i = 1 or 2.

The link with any experimental VLE data may be

established by two entirely equivalent formal approaches

presented below [3, 5, 6, 14, 30].

In the first, the equilibrium condition Eq. 1 is rewritten in

terms of the fugacity coefficient of component i in solution in

phase p = V or p = L, which quantity is defined by

/p
i T ; P; xp

i

� �� �
¼ f p

i T; P; xp
i

� �� ��
xp

i P ð2Þ

Adopting the widely used notation xV
i ¼ yi, and xL

i ¼ xi,

the condition for VLE in a binary system may now be

expressed as
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yi/
V
i T ; P; yið Þ ¼ xi/

L
i T; P; xið Þ; i ¼ 1; 2 ð3Þ

For obvious reasons, this approach is known as the

/; /ð Þmethod.

Perfectly general equations, valid for both fluid phases V

and L, allow the calculation of the component fugacity

coefficients at any desired pressure or amount-of-substance

density q ¼ 1=V from PVT equations-of-state (EOS) for

the mixture/solution. The proviso is, of course, that the

EOS is valid over the entire range of integration. In terms

of a volume-explicit EOS Z � PV=RT ¼Z T ; P; xp
i

� �� �
,

where Z is the compression factor, V is the molar volume,

and R is the gas constant,

ln/i ¼
ZP

0

o nZð Þ=onið ÞT ;P; nj
�1

h i dP

P
; constant T; xp

i

� �

ð4Þ

Here, ni is the amount of substance i, and n ¼
P

ni. When a

pressure-explicit EOS Z ¼ Z T ; V ; xp
i

� �� �
is used, we obtain

ln/i¼
Z1

V

o nZð Þ=onið ÞT ;nV ;nj
�1

h idV

V
�lnZ; constant T; xp

i

� �

ð5Þ

Since the majority of the EOS in use is pressure-explicit

rather than volume-explicit, the most important exception

being the volume-explicit virial EOS, Eq. 5 is more useful

in VLE problems than Eq. 4.

In the second approach, while the component fugacities

in the vapor phase are again expressed in terms of fugacity

coefficients, the liquid-phase fugacities of the components

are expressed in terms of appropriately normalized liquid-

phase activity coefficients.

When ideal-solution behavior is based on the Lewis-

Randall rule

f LR
i T; P; xið Þ ¼ xif

L�
i T; Pð Þ; 0� xi� 1 ð6Þ

and the corresponding activity coefficients are given by

cLR
i T; P; xið Þ � f L

i

�
f LR
i ¼f L

i T; P; xið Þ=xif
L�
i T ; Pð Þ;

i ¼ 1; 2 ð7Þ

Here, the superscript asterisk denotes, as always, a pure-

substance property:

f L�
i T ; Pð Þ ¼ P/L�

i T ; Pð Þ ð8Þ

is the fugacity of pure component i in either a real or a

hypothetical liquid state at (T, P) of the liquid solution, and

/L�
i T ; Pð Þ is its fugacity coefficient. The activity

coefficients are said to be normalized symmetrically when

the defining Eq. 7 applies for all components, and

cLR
i ! 1 as xi ! 1; constant T ; P ð9Þ

This approach is also known, somewhat loosly, to be based

on Raoult’s law.

Ideal-solution behavior based on Henry’s law is char-

acterized by

f HL
i T ; P; xið Þ ¼ xihi; j T ; Pð Þ; 0� xi� 1 ð10Þ

and the corresponding activity coefficients are given by

cHL
i T ; P; xið Þ � f L

i

�
f HL
i ¼ f L

i T ; P; xið Þ
�

xihi; j T; Pð Þ;
i ¼ 1; 2; i 6¼ j ð11Þ

Here, hi; j T; Pð Þ denotes the Henry fugacity of component i

dissolved in liquid j at (T, P) of the liquid solution [14]. This

quantity is also known as Henry’s law constant. The value of

the Henry fugacity depends not only on T and P but also on

the identity of solute i and solvent j (the other component),

whence the double subscript has been added. The activity

coefficients are said to be normalized unsymmetrically when

for the solvent (i = 1) the defining Eq. 7 applies, and for the

solute (i = 2) the defining Eq. 11 applies, and

cLR
1 ! 1 as x1 ! 1; constant T ; P ð12aÞ

cHL
2 ! 1 as x2 ! 0; constant T; P ð12bÞ

Since the limiting value of the ratio f p
i

�
xp

i for xp
i ! 0 at

constant T and P is known from experiment to be finite, by

de l’Hôpital’s rule

lim
xp

i!0

f p
i

xp
i

� �
¼ df p

i

dxp
i

� �

xp
i ¼0

¼ hp
i;j T; Pð Þ; constant T ; P

ð13Þ

Equation 13 defines the Henry fugacity of i dissolved in j

for any phase p (L or V). It shows that f p
i becomes zero at

xp
i ¼ 0 and identifies the limiting slope of the curve f p

i vs.

xp
i as the Henry fugacity. Henry’s law is a limiting law and

is approximately valid for small values of xp
i .

The limiting behavior at the other end of the composi-

tion range, i.e. for xp
i ! 1, follows from application of the

isothermal-isobaric Gibbs–Duhem equation. At constant

T and P one obtains

lim
xp

i!1

f p
i

xp
i

� �
¼ df p

i

dxp
i

� �

xp
i ¼1

¼ f p�
i T;Pð Þ; constantT ;P ð14Þ

where f p�
i T ; Pð Þ is the fugacity of pure component i at (T,

P) of the solution and in the same physical state. Equa-

tion 14 is valid in any phase p (L or V) and shows that in

the limit xp
i ! 1 both f p

i and its derivative with respect to

xp
i become equal to the fugacity of pure i. The Lewis-
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Randall rule is a limiting law and is approximately valid

for values of xp
i near unity.

We note that while Eqs. 13 and 14 are formally similar,

for real systems in general hp
i;j T ; Pð Þ 6¼ f p�

i T ; Pð Þ. The

ideal-solution model based on the Lewis-Randall rule, i.e.,

Eq. 6, is preferably used when component i can exist as a

pure liquid at the temperature of the solution. Whenever a

component cannot exist as a pure liquid at the temperature

of the solution, a situation encountered in solutions of gases

(supercritical solutes) in liquids, the alternative ideal-

solution model based on Henry’s law, i.e., Eq. 10, may be

advantageously used for that component (the solute).

The condition for phase equilibrium (VLE) may now be

recast either into

/V
i T; P; yið ÞyiP ¼ cLR

i T; P; xið Þxif
L�
i T ; Pð Þ ð15Þ

or, equivalently, into

/V
i T; P; yið ÞyiP ¼ cHL

i T ; P; xið Þxihi; j T; Pð Þ ð16Þ

where the superscript p = L of the Henry fugacity has

been dropped for convenience. These two approaches are

known as the /; cð Þ methods.

At this juncture, several points should be emphasized; for

details see [5, 6, 14, 15, 31–33]. Since the conventions intro-

duced above are all equivalent, the various quantities associated

with them are, of course, related. For instance, comparison of

Eq. 7 with Eq. 10 shows that i; j ¼ 1; 2; i 6¼ jð Þ
cLR

i T; P; xið Þ
cHL

i T ; P; xið Þ ¼
hi;j T ; Pð Þ
f L�
i T ; Pð Þ ð17Þ

Thus, in the limit xi ! 0 one obtains for the activity coefficient

at infinite dilution in the symmetric (LR) convention

cLR1
i ¼ hi; j

�
f L�
i ð18Þ

whence

cHL
i ¼ cLR

i

�
cLR1

i ð19Þ

For the sake of a more compact notation, the specifications

(T, P, xi) etc. have been omitted.

By definition, for component i in solution in any phase

p, Eq. 2 applies, whence according to Eq. 13 the important,

generally valid relation

/p1
i T ; Pð Þ ¼ lim

xp
i!0

/p
i T ; P; xp

i

� �
¼ 1

P
lim

xp
i!0

f p
i T ; P; xp

i

� �

xp
i

	 


¼
hp

i;j T ; Pð Þ
P

; constant T and P ð20Þ

is obtained [6, 14, 31–33], where /p1
i T; Pð Þ is the fugacity

coefficient of component i at infinite dilution in the phase

p. Evidently, Eq. 20 will yield the thermodynamically

correct limiting value of the Henry fugacity h2; 1 T ; Ps; 1

� �

as solvent critical conditions (critical temperature T c, 1,

critical pressure Pc, 1, and critical molar volume V c, 1) are

approached [5, 6, 14, 31–36]:

lim
T!Tc; 1

P!Pc; 1

h2; 1 T; Ps; 1

� �
¼ Pc; 1/

V1
2 Tc; 1; Pc; 1

� �
ð21Þ

where use was made of the equilibrium condition

prevailing at the critical point, that is

/V1
2 Tc; 1; Pc; 1

� �
¼ /L1

2 Tc; 1; Pc; 1

� �
ð22Þ

A considerably more elaborate derivation was presented by

Beutier and Renon [37]. Equation 21 conclusively shows

that Hayduk and Buckley’s assertion [38] that the solu-

bilities of gases in a given solvent tend to coincide at a

temperature near the solvent’s critical is untenable.

The following equations show some rigorous links

between a thermodynamic description of a liquid solution/

mixture based on activity coefficients and a thermody-

namic description based on fugacity coefficients and hence

on an EOS. For instance,

cLR
i ¼ /L

i

�
/L�

i ð23Þ

cHL
i ¼ /L

i

�
/L1

i ð24Þ

and

cLR1
i ¼ /L1

i

�
/L�

i ð25Þ

Finally, I emphasize the close connection with residual

quantities in (T, P, x)-space [6, 14]. Note that,

ln/L�
i T ; Pð Þ ¼ GR;L�

i T; Pð Þ
�

RT ð26Þ

where GR;L�
i is the residual molar Gibbs energy of pure

liquid component i, and

ln/L1
i T; Pð Þ ¼ lR;L1

i T; Pð Þ
�

RT ð27Þ

where lR;L1
i is the residual chemical potential of compo-

nent i at infinite dilution in the liquid phase.

Equations 3, 15, and 16 may each serve as a rigorous

thermodynamic basis for the treatment of VLE. The decision

as to which approach should be adopted is by and large a

matter of taste and convenience. VLE involving fairly simple

fluids may conveniently be treated in terms of the /; /ð Þ
approach, Eq. 3, because the use of a single EOS valid for

both phases V and L has some computational advantage and

a certain aesthetic appeal. However, the emphasis is on

‘‘fairly simple,’’ since no generally satisfactory EOS for

dense fluids of practical, that is to say, chemical engineering

importance has as yet been developed. At low to moderate

pressures and for mixtures where the critical temperature Tc, i

of each component is larger than the experimental temper-

ature, and when the interest is on the composition depen-

dence of the various thermodynamic quantities over the

entire composition range 0 B xi B 1, VLE data reduction,
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VLE calculations and VLE predictions are preferably based

on the classical LR (/, c) formalism, Eq. 15, with the sym-

metric convention for the activity coefficients. However,

when we consider a binary system for which component 2,

designated the solute, is supercritical, no experimental vapor

pressure of the solute exists, and thus its fugacity f L�
2 T ; Pð Þ

as a real, pure liquid at the temperature of interest does not

exist. An alternative approach is required, the most natural

choice being the use of the HL (/, c) formalism, Eq. 16, for

the solute, while for the solvent, component 1, the LR for-

malism, Eq. 15, is maintained (unsymmetric convention for

the activity coefficients). It has the unquestioned advantage

that the Henry fugacity h2, 1, and hence cHL
2 , are unambigu-

ously accessible according to an experimental procedure as

outlined below; these quantities may be obtained, at least in

principle, to any desired degree of accuracy. Since the HL

formulation for the component fugacity of the solute,

f L
2 T ; P; x2ð Þ ¼ cHL

2 T ; P; x2ð Þx2h2; 1 T; Pð Þ ð28Þ

is of central importance in the discussion of dilute solu-

tions, it is also frequently used when Tc, i [ T, i.e., for

subcritical VLE at high dilution. We note that rigorous

extensions to mixed solvents are rather complex. The

ensuing problems have been discussed in depth by Van

Ness and Abbott [39].

The Henry fugacity of solute 2 dissolved in liquid sol-

vent 1 is defined by Eq. 14 with p = L. For VLE, because

of the phase equilibrium criteria Eqs. 1 and 2

f L
2 ¼ f V

2 ¼ /V
2 y2P ð29Þ

where all quantities refer to the actual VLE conditions.

Equation 29 in conjunction with Eq. 28 provides a

convenient experimental basis for the determination of

h2, 1 through isothermal extrapolation x2 ? 0. Here,

/V
2 T; P; y2ð Þ must be calculated with a suitable vapor-

phase EOS (see Eqs. 4 and 5, and the appropriate section

below). Because the equilibrium composition varies with

varying total pressure, for each composition cHL
2 and h2, 1

refer to a different pressure. For the reduction, correlation

and further use of solubility data, it is advantageous to select

at each temperature the vapor pressure Ps, 1(T) of the solvent

as reference pressure (the subscript s always indicates

saturation conditions). Thus, Eqs. 28 and 29 lead to

h2; 1 T; Ps; 1

� �
¼/V

2 T ; P; y2ð Þy2P

x2

1

cHL
i T ; Ps; 1; x2

� �

� exp �
ZP

Ps; 1

VL
2 T ; P; x2ð Þ

RT
dP

8
><

>:

9
>=

>;
ð30Þ

where VL
2 T ;P; x2ð Þ is the partial molar volume of the solute

at mole fraction x2 in the liquid phase. The exponential,

known as a Poynting factor, represents the combined con-

tribution of the pressure dependence of the activity coeffi-

cient and the Henry fugacity. At low to moderate pressures,

and at temperatures well below the critical temperature Tc,1

of the solvent, it typically differs from unity by only a few

parts per thousand. Evidently, at the vapor pressure Ps, 1(T) of

the solvent, the Henry fugacity pertaining to the liquid phase

is rigorously accessible from isothermal VLE measurements

at decreasing pressure P ? Ps, 1, where also x2 ? 0 and

y2 ? 0. It is the intercept of a plot of /V
2 T ; P; y2ð Þ

y2P
�

x2against x2. Once the Henry fugacity has been obtained

through extrapolation to Ps, 1, Eq. 30 in conjunction with the

experimental VLE results at pressures P [ Ps, 1 may be used

to obtain constant-temperature, constant-pressure activity

coefficients cHL
i T ; Ps; 1; x2

� �
. Their composition dependence

may be represented by any appropriate correlating equation

compatible with the number and the precision of the exper-

imental results. Equation 30 is the key equation in the clas-

sical sequential approach to gas-solubility data reduction

(supercritical solute), and is most frequently adopted [5, 6,

14, 40]. It simply reflects the focusing of interest on the

solute in a composition range very close to pure solvent,

though ‘‘very close’’ varies from system to system. It makes

little use of the information thermodynamics supplies on the

VLE equilibrium equation for the solvent, but, of course, for

gas-solubility calculations it is needed. The resulting

expressions are analogous to those used for subcritical, LR-

based VLE calculations [30].

To summarize: both the LR and the HL-based approaches

outlined above provide adequate prescriptions for data

reduction, correlation, and calculation in experimental VLE

investigations. In addition, as indicated by Eqs. 26 and 27,

the central quantities involved, that is (for a binary system)

f L�
1 ; f L�

2 ; h2; 1; cLR
1 ; cLR

2 ; cHL
2 , are thermodynamic properties

pertaining to the liquid phase. For instance, LR-based

activity coefficients lead to excess molar Gibbs energies

GE ¼ RT
X

i

xilncLR
i ð31Þ

of the liquid mixture, the temperature dependence of the

Henry fugacity is given by

o ln h2; 1 T ; Pð Þ
oT

� �

P

¼ �DH12 T ; Pð Þ
RT2

ð32Þ

and its pressure dependence by

o ln h2; 1 T ; Pð Þ
oP

� �

T

¼ VL1
2 T ; Pð Þ

RT
ð33Þ

Here, DH12 � HL1
2 � Hpg�

2 is the the molar enthalpy

change on solution (enthalpy of solution) with HL1
2

denoting the partial molar enthalpy of the solute at infinite

dilution in the liquid solvent and Hpg�
2 denoting the molar
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enthalpy of the pure solute in the perfect-gas (pg) state.

VL1
2 is the partial molar volume of the solute at infinite

dilution in the liquid solvent 1.

Equation 32 provides the basis for obtaining enthalpies

of solution through van’t Hoff analysis of high-precision

solubility data of gases in liquids. Since

oDH12 T ; Pð Þ
oT

� �

P

¼ DC1P; 2 T ; Pð Þ ð34Þ

the molar heat capacity change DC1P; 2 � CL1
P; 2 � Cpg�

P; 2 on

solution may also be obtained by van’t Hoff analysis [5, 6, 8,

13, 14, 40–42]. Here, CL1
P; 2 is the partial molar heat capacity

at constant pressure of the solute at infinite dilution in the

liquid solvent, and Cpg�
P; 2 is the molar heat capacity at constant

pressure of the pure solute in the perfect-gas state.

Equation 33 allows the calculation of the Henry fugacity of

solute 2 dissolved in liquid solvent 1 for any desired pressure

(Poynting correction), which is, perhaps, the main reason why

reliable VL1
2 data are so much in demand. The analogous

equation for the LR activity coefficients (i = 1 or 2) reads

olncLR
i T; P; xið Þ

oP

� �

T ; xi

¼ VL
i T; P; xið Þ � VL�

i T; Pð Þ
RT

ð35Þ

and the pressure dependence of the HL activity coefficient

is given by

olncHL
2 T ; P; x2ð Þ

oP

� �

T ; x2

¼ VL
2 T ; P; x2ð Þ � VL1

2 T; Pð Þ
RT

ð36Þ

The most important application of VLE relations is in the

design of separation processes for the chemical industry. A

frequently used measure of the tendency of a given

component to distribute itself between the coexisting

equilibrium phases is the vapor–liquid distribution

coefficient or K value of solute 2 in solvent 1. It is defined by

K2; 1 T ; Pð Þ � y2

x2

� �

equil

ð37Þ

and thus always refers to the actual T and P at phase

equilibrium. With the help of Eq. 3, the general expression

K2; 1 T ; Pð Þ ¼ /L
2 T; P; x2ð Þ

/V
2 T ; P; y2ð Þ

ð38Þ

is obtained, which provides the link to EOS-based

calculations. Using Eq. 20, the infinite-dilution limit of

this quantity may be profitably expressed as

K12; 1 T ; Ps; 1

� �
¼

h2; 1 T ; Ps; 1

� �

/V1
2 T ; Ps; 1

� �
Ps; 1

ð39Þ

which in turn leads to an important relation with the

Ostwald coefficient L12; 1 T; Ps; 1

� �
of solute 2 at infinite

dilution in solvent 1:

K12; 1 T ; Ps; 1

� �
¼ 1

L12; 1 T ; Ps; 1

� �
VV�

s; 1

VL�
s; 1

ð40Þ

Here, VV�
s; 1 and VL�

s; 1 are the molar volumes of pure saturated

vapor and liquid, respectively, and

L12; 1 T ; Ps; 1

� �
¼ lim

P!Ps; 1

L2; 1 T ; Pð Þ ¼ lim
P!Ps; 1

qL
2

qV
2

� �

equil

ð41Þ

L2; 1 T ; Pð Þ is the Ostwald coefficient at P [ Ps, 1,

q2 ¼ n2= n1 þ n2ð ÞV½ � ¼x2=V ¼ x2q with the appropriate

superscript L or V, is the amount-of-substance concen-

tration (amount-of-substance density) of solute 2 in either

the liquid-phase solution or in the coexisting vapor-phase

solution at T and equilibrium pressure P, V is the molar

volume of the solution, the amounts of solvent and solute

are denoted by n1 and n2, respectively, and
P

qi ¼ q ¼
1=V is the total amount-of-substance density of the

solution. Thus, in contradistinction to the Henry fugacity,

which is a single-phase quantity, the Ostwald coefficient

(like the K-value) is a distribution coefficient pertaining to

the solute dissolved in both coexisting phases L and V, and

therefore always refers to the temperature and pressure of

the actual VLE [5, 6, 14, 34–36, 40, 41, 43, 44]. After

some algebraic manipulation we obtain

L12; 1 T ; Ps; 1

� �
¼ RT

h2; 1 T; Ps; 1

� �
VL�

s; 1

ZV�
s; 1/

V1
2 T; Ps; 1

� �
ð42Þ

where ZV�
s; 1 ¼ Ps; 1VV�

s; 1

.
RT is the compression factor of

pure saturated solvent vapor.

Practical implementation and subtleties

of approximation

In the preceding section, the thermodynamic formalism as

applied to binary solutions that contain a supercritical

component (gas) has been summarized concisely. This

section is devoted to review various approximations to

some of the exact relations obtained so far. Indeed, these

approximations are essential when practical application is

the goal.

Since Henry fugacities and related quantities are usually

referred to orthobaric conditions, reliable vapor pressure

data are indispensable, as are data on critical temperature,

critical pressure and critical volume [45]. For water, Poling

et al. recommend Tc = 647.14 K, Pc = 22.064 MPa, and

Vc = 55.95 cm3 mol-1.

As pointed out above, when using the classical

sequential approach exemplified by Eqs. 13 and 30, a

vapor-phase EOS is required for calculating the fugacity

coefficient /V
2 T ;P; y2ð Þ. Since the majority of gas-solu-

bility measurements are performed in the low to
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moderate pressure domain, virial EOS are frequently

used and are superior to cubic EOS. The computational

convenience associated with using a volume-explicit vi-

rial EOS

ZV T ; P; y2ð Þ � PVV
�

RT ¼ 1þ BP=RT ð43Þ

in conjunction with Eq. 4 leads to the widely used

expression for the fugacity coefficient of component i in

a binary vapor mixture

ln/V
i ¼

P

RT
Bii þ y2

j d12

� �
; i; j ¼ 1; 2; i 6¼ j ð44Þ

with d12 = 2B12 - (B11 ? B22). Here, B = y1B11 ?

y2B22 ? y1y2d12 is the second virial coefficient of the

mixture, B11 and B22 are the second virial coefficients of

the pure components, and B12 designates a composition-

independent interaction virial coefficient (cross-

coefficient). The fugacity coefficient of the solute at

infinite dilution in the vapor phase is thus given by

ln/V1
2 ¼ P

RT
2B12 � B11ð Þ ð45Þ

and the fugacity coefficient of pure component 2 by

ln/V�
2 ¼

P

RT
B22 ð46Þ

The quite popular rule-of-thumb /V
2 T;P; y2ð Þ ¼ /V�

2 T ;Pð Þ
may frequently be rather unsatisfactory: for the evaluation

of /V1
2 it only holds if B12 = (B11 ? B22)/2.

Frequently, experimental results [46, 47] on second vi-

rial coefficients for mixtures are not available, and even for

pure water vapor the situation below about 400 K is not

entirely satisfactory and subject to intensive research [48].

Thus, one depends heavily on semiempirical estimation

methods, which are predominantly based on the extended

corresponding states theorem. One of the most popular and

reliable methods is due to Tsonopoulos and Dymond [49]

which, since its inception in 1974, has been revised and

extended several times. In order to estimate second virial

cross-coefficients Bij, appropriate semiempirical combining

rules have to be used to obtain the characteristic parameters

pertaining to the unlike interaction from the pure-substance

quantities. Almost inevitably, these combining rules

incorporate a binary interaction parameter kij (usually

much smaller than 1) which improves on the geometric-

mean approximation for the pseudo-critical temperature:

Tc; ij ¼ 1� kij

� �
Tc; iTc; j

� �1=2 ð47Þ

It is, in fact, the most crucial combining rule for the

prediction of Bij. Experiment-based optimized values of kij

for quite a few mixtures have been reported in the

literature, together with appropriate correlations, each

valid for a given type of mixture. For instance, for

binaries where both components belong to essentially

nonpolar hydrocarbons, or rare gases or simple molecular

gases, kij may be estimated from [45]

kij ¼ 1�
8 Vc; iVc; j

� �1=2

V
1=3
c; i þ V

1=3
c; j

� �3
ð48Þ

In the key relation Eq. 30, the influence of composition

upon the liquid-phase fugacity has been separated formally

from the influence of pressure (see Eqs. 33 and 36).

However, a rigorous evaluation of the Poynting integral

would require detailed knowledge of the composition

dependence as well as the pressure dependence of the

partial molar volume VL
2 T ;P; x2ð Þ at each temperature of

interest. However, such comprehensive information will

rarely be available, whence for the great majority of

solutions approximations at various levels of sophistication

must be introduced to render VLE data reduction tractable.

The situation becomes particularly demanding at high

pressures and/or when the critical region is approached,

where the Poynting corrections become significant.

With solubility experiments, the focus is on the ther-

modynamics at high dilution, and typical gas-solubility

measurements do not cover large composition ranges. At

pressures reasonably close to Ps;1, and thus at very small

mole fractions x2, and at temperatures well below the

critical temperature of the solvent, to an excellent

approximation VL
2 T ;P; x2ð Þ of Eq. 30 may be replaced by a

pressure-independent partial molar volume at infinite

dilution VL1
2 T;Ps;1

� �
. Since inevitable experimental

scatter often tends to obscure the composition dependence

of any activity coefficient cHL
2 T;Ps;1; x2

� �
for x2 ? 0, we

may now assume cHL
2 ffi 1, independent of composition.

These approximations lead to the Krichevsky–Kasarnovsky

equation

lnh2; 1 T ; Ps; 1

� �
¼ ln

/V
2 T; P; y2ð Þy2P

x2

� �

�
P� Ps; 1

� �
VL1

2 T ; Ps; 1

� �

RT
ð49Þ

Evidently, the partial molar volume of the solute at infinite

dilution is important in the reduction and correlation of

accurate solubility measurements. The preferred

experimental methods for determining VL1
2 are either

precision dilatometry or precision densimetry or magnetic

float methods [50–53]. However, experimental results on

VL1
2 of gases dissolved in liquids are not plentiful, whence

reliable semi-empirical estimation methods are required.

For instance, partial molar volumes of gases at infinite

dilution in non-aqueous solvents will usually be predicted

to within about ±10% by the Handa–Benson correlation
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Pc; 2VL1
2

RTc; 2
¼ 0:088þ 2:763

TPc; 2

Tc; 2P
L�
s; 1

ð50Þ

where

PL�
s; 1 ¼

TaL�
P; s; 1

bL�
T ; s; 1

� Ps; 1 ð51Þ

is the internal pressure, aL�
P;s;1 is the isobaric expansivity, and

bL�
T ;s;1 is the isothermal compressibility, respectively, of the

pure, saturated liquid solvent. Scaled particle theory (SPT)

has been used successfully by Pierotti [54], among others, to

calculate VL1
2 of non-polar and polar gases in non-polar and

polar solvents including water. The SPT expressions for this

quantity are well known and may easily be found in the

literature. As emphasized by Wilhelm and Battino [55, 56],

the use of self-consistent molecular parameters, that is of

effective Lennard–Jones (6, 12) parameters, is of central

importance. The correlational and predictive powers of the

SPT-based approach can be substantially improved by

introducing the concept of temperature-dependent effective

size parameters as suggested by Wilhelm [57], and more

recently by Schulze and Prausnitz [58].

The development of new experimental techniques to VLE

in general, and as applied to dilute solutions in particular,

continues unabated. These efforts are stimulated not only by

theory-related aspects, but also by a growing awareness of

the practical value of highly accurate thermodynamic data.

Those potentially interested in building precision equipment

are referred to reviews, for instance, by Raal and Ramju-

gernath [59], Richon and de Loos [60], Wilhelm [14], Ma-

urer and Pérez-Salado Kamps [61], Matouš et al. [62], Raal

and Ramjugernath [63], and Dohnal [64].

Once experimental Henry fugacities for a specific binary

solution have been determined over a reasonably large

temperature range, the question arises as to their most

satisfactory mathematical representation as a function of

temperature. Depending on the choice of variables, that is T

or T-1, for expanding the enthalpy of solution, either the

Clarke–Glew equation [65]

ln h2; 1 T ; Ps; 1

� ��
Pa


 �
¼ A0 þ A1 T=Kð Þ�1þA2ln T=Kð Þ

þ
Xn

i¼3

Ai T=Kð Þi�2

ð52Þ

or the Benson–Krause (BK) equation [66]

ln h2; 1 T ; Ps; 1

� ��
Pa


 �
¼
Xm

i¼0

ai T=Kð Þ�i ð53Þ

is obtained. On the basis of the ability to fit high-precision

Henry fugacity data over large temperature ranges, and of

simplicity, the BK power series in T-1 appears to be superior.

At this juncture I would like to emphasize that the frequently

found sweeping statement ‘‘the solubility of a gas in a liquid

decreases with increasing temperature’’ is misleading/

incorrect when the entire liquid range between the triple

point and the critical point of the solvent is considered. For

many systems, the following behavior is well documented: at

low temperatures near the solvent triple point, h2;1 T ;Ps;1

� �

first increases with increasing temperature, then goes through

a maximum to decrease toward the exact limiting value given

by Eq. 21. As an example, Fig. 1 shows a plot of h2;1 T ;Ps;1

� �

plotted against temperature for methane dissolved in liquid

water [40, 67], a solution which plays an important role in

discussions of hydrophobicity. When the critical point of the

solvent is approached along the coexistence curve, for

volatile solutes the limiting temperature derivative of the

Henry fugacity is given by [68, 69]

lim
T!Tc; 1

P!Pc; 1

d ln h2; 1 T ; Ps; 1

� ��
Pa


 �

dT
¼ �1 ð54Þ

During the last 20 years or so, several equations for pre-

senting the temperature dependence of the Henry fugacity

between the triple point temperature and the critical tem-

perature of the solvent were developed to incorporate the

thermodynamically correct limiting behavior indicated by

300 400 500
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H2O/CH4

T/K
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[h

2,
1(

T,
 P

s,
1)

/G
P

a]

Fig. 1 Plot of ln h2;1 T ;Ps;1

� ��
GPa


 �
against temperature T for

methane dissolved in liquid water. h2;1 T ;Ps;1

� �
denotes the Henry

fugacity (Henry’s law constant) at temperature T and vapor pressure

Ps;1 Tð Þ. Filled circles, experimental results of Rettich et al. [40]: the

average percentage deviation of the Henry fugacity from the value

calculated via the correlating BK function (see text) is about ±0.05%;

open circles, experimental results of Crovetto et al. [67]: the average

percentage deviation of the Henry fugacity from the value calculated

via the correlating BK function (see text) is about ±2%
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Eqs. 21 and 54. For details I refer to [14] and the original

literature cited therein.

Until the mid-eighties, high-precision measurements of

Henry fugacities over temperature ranges large enough to

permit reliable van’t Hoff analysis constituted the only

source of information on partial molar enthalpy changes

on solution DH12 T;Ps;1

� �
, see Eq. 32, and a fortiori on

partial molar heat capacity changes on solution

DC1P;2 T ;Ps;1

� �
, see Eq. 34. Since the experimental Henry

fugacities at different temperatures refer to different satu-

ration pressures Ps;1 ¼ Ps;1 Tð Þ, Eqs. 32 and 34 have to be

augmented accordingly, as detailed by Wilhelm [6, 11, 13,

42] and in earlier references quoted therein. For instance,

selecting a BK-type fitting equation to represent the tem-

perature dependence of the h2;1 T;Ps;1

� �
data, we obtain

DH12 T; Ps; 1

� �

RT
¼
Xm

i¼1

iai T=Kð Þ�iþVL1
2

R

dPs; 1

dT
ð55Þ

These supplemental terms (here it is only one term, the

second term on the right-hand side of Eq. 55) containing

VL1
2 and its derivatives with respect to T and P together with

dPs;1

�
dT and d2Ps;1

�
dT2 and so forth—now referred to in

the literature [69, 70] as Wilhelm terms—have been long

overlooked. Their contributions increase rapidly with

increasing temperature. In fact, the partial molar volume of a

gas at infinite dilution in a liquid solvent diverges to ? ? at

the critical point of the solvent, and the partial molar enthalpy

at infinite dilution, HL1
2 , will diverge in exactly the same

manner. The important experiments of Wood and collabo-

rators confirm these expectations [53, 71–74].

In [42], we recently presented a comprehensive compila-

tion and comparison, at T = 298.15 K and Ps,1= 3.1691 kPa,

of partial molar enthalpy changes on solution, DH12 T ;Ps;1

� �

and partial molar heat capacity changes on solution,

DC1P;2 T ;Ps;1

� �
, for 32 gases in liquid water (in a few cases the

solutes were, in fact, subcritical vapors, i.e., 298.15 K \ Tc,

2). The comparison was between results obtained via van’t

Hoff analysis of high-precision solubility data and calori-

metrically determined values, which is also contained here, in

Table 1, for argon, oxygen, and methane in water.

When measured over a sufficiently large temperature

range, calorimetry-based DH12 T;Ps;1

� �
may in turn be

used to to calculate DC1P;2 T;Ps;1

� �
according to

DC1P; 2 T; Ps; 1

� �
¼

dDH12 T ; Ps; 1

� �

dT

� VL1
2 � T

oVL1
2

oT

� �

P

� �
dPs; 1

dT
ð56Þ

However, in the temperature regions considered so far the

second term on the right-hand side of Eq. 56 is usually

smaller than the experimental imprecision, whence the

approximate equation

DC1P; 2 T; Ps; 1

� �



dDH12 T ; Ps; 1

� �

dT
ð57Þ

is entirely satisfactory.

Direct calorimetric determinations of the high-dilution

partial molar enthalpy change on solution of a gas in a

liquid have been carried out by only a limited number of

researchers, essentially because of the experimental diffi-

culties associated with accurately measuring small heat

effects in very dilute solutions (typically, mole fraction

solubilities at 0.1 MPa gas pressure are about 10-4–10-5).

A fortiori this is the case for directly measured heat

capacities of gases dissolved in water: there exist only

seven sets of such data, all originating from the laboratory

of R. H. Wood at the University of Delaware in Newark,

Delaware, USA. Wood and collaborators [72, 73] deter-

mined the apparent molar heat capacities of four inert

solutes, i.e., of aqueous argon, xenon [73], methane [74],

and ethene [73] (and of aqueous CO2, H2S, and NH3 [74])

over very large temperature ranges with sophistically

constructed flow calorimeters. Although these calorimetric

measurements were all performed at elevated pressures

between, roughly, 17 and 32 MPa, the mole fractions of the

dissolved gases are small enough to make the apparent

molar heat capacities approximately equal to the partial

molar heat capacities at infinite dilution within experi-

mental error (at temperatures below ca. 500 K). Evidently,

much more experimental calorimetric work on simple

aqueous solutions would be desirable.

Table 1 Partial molar enthalpy changes on solution DH12 T ;Ps;1

� �

and partial molar heat capacity on solution DC1P;2 T ;Ps;1

� �
of argon,

oxygen and methane dissolved in liquid water a T = 298.15 K and

Ps,1 = 3.1691 kPa: comparison of values obtained via van’t Hoff

analysis of high-precision gas solubility data with values obtained by

calorimetric methods

Gas 10�3DH12 T ;Ps;1

� �
=ðJ mol�1Þ DC1P;2 T ;Ps;1

� �
=ðJ K�1mol�1Þ

van’t Hoff Calorimetry van’t Hoff Calorimetry

Ar -11.95 [66] -12.01 [76] 186 [66] 200 [76]

-11.92 [70] -11.94 [77] 195 [70] 189 [72]

-11.96 [75] 192 [75]

O2 -12.19 [66] -12.06 [79] 192 [66] 205 [76]

-12.01 [78] -12.03 [80] 196 [78]

-11.97 [41] -12.00 [76] 200 [41]

CH4 -13.19 [40] -13.06 [76] 237 [40] 242 [76]

-13.18 [81] 218 [83]

-13.12 [82] 209 [82]

212 [74]
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The large partial molar heat capacity changes

DC1P;2 T ;Ps;1

� �
observed when nonpolar molecules are

dissolved in water are widely regarded as the signature of

hydrophobicity, and have been connected with some

unspecified ordering of the water molecules around the

solute (exemplified by the famous ‘‘iceberg model’’ of

Frank and Evans [84]). The picture that emerges from

structural studies, using the method of neutron diffraction

and isotopic substitution, on aqueous solutions of methane

[85] is the following: the solute is surrounded by a rela-

tively strong first coordination shell containing about 19

water molecules which are oriented tangentially to the CH4

molecule, with no evidence of a second coordination shell.

There is reasonably good agreement between these obser-

vations and those deduced from theoretical model calcu-

lations and computer simulations [86], though the

interaction between the apolar molecules and water appears

to be much shorter-ranged than suggested by the model

calculations. At elevated temperatures, these pseudo-

clathrate cages should gradually disappear, and concomi-

tantly the partial molar heat capacity CL1
P;2 at constant

pressure of solute 2 at infinite dilution in liquid water

should diminish, though it will increase again, and even-

tually diverge to þ1 when the critical point of water is

approached from lower temperatures.

Comparing thermodynamically rigorous van’t Hoff-

derived enthalpy changes (one differentiation level with

respect to temperature) and heat capacity changes (two

differentiation levels with respect to temperature), both

referring to infinitely dilute solutions of gases in water,

with high-precision calorimetric results constitutes a severe

quality test of solubility data. In general, the agreement

between these two approaches was found to be entirely

satisfactory, as shown by Wilhelm [13, 14] and by Wilhelm

and Battino [42]: it was usually within the combined

experimental errors. What better tribute to both experi-

mental ingenuity and state-of-the-art data treatment can

one wish for!

Concluding remarks

Chemical thermodynamics of solutions in general, and of

aqueous solutions in particular, continue to be exciting,

developing fields which, combined with advances in the

statistical-mechanical treatment of solutions and increas-

ingly sophisticated computer simulations, provide new

insights and stimulating connections at a microscopic

level. The major driving forces for progress in instru-

mentation are the desire to increase the application range,

to increase precision and accuracy, to improve on the

speed of measurement, and to facilitate application [5, 11,

12, 87]. In this review, I have concisely presented the

thermodynamic formalism relevant to the study of dilute

solutions of nonelectrolytes, the focus being on aqueous

solutions. Two intimately related topics have been dealt

with prominently:

• adequate discussion of solution behavior in terms of the

Henry fugacity (also known as Henry’s law constant)

and related quantities, such as activity coefficients and

fugacity coefficients;

• reconciliation of results for caloric quantities (e.g. DH2
?

and DCP, 2
? ) derived from solubility measurements via

van’t Hoff analysis with those measured directly with

calorimeters.

They both present the state of the art to the potential

experimentalist. Finally, I would like to point out that

cross-fertilization with neighboring disciplines has always

been a potent stimulus in science. This is particularly true

for research on the solubility of gases in liquid water,

which contributes greatly to our understanding of hydro-

phobic effects which play a central role in biology. The

increasing number of investigations with a strong biophys-

ical and/or biomedical flavor is thus not surprising.
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74. Hnedkovský L, Wood RH. Apparent molar heat capacities of

aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures

from 304 K to 704 K at a pressure of 28 MPa. J Chem Ther-

modyn. 1997;29:731–47.

75. Rettich TR, Battino R, Wilhelm E. Solubility of gases in liquids.

18. High-precision determination of Henry fugacities for argon in

liquid water at 2 to 40 �C. J Solut Chem. 1992;21:987–1004.

76. Olofsson G, Oshodj AA, Qvarnström E, Wadsö I. Calorimetric
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